Hệ thống nhắc nhở thành viên Bạn đang xem: Chuyên đề chứng minh bất đẳng thức Gửi bởi Nesbit |
Đặt tiêu đề thế nào để bài không bị xóa? Gửi bởi E. Galois |
Trình soạn thảo công thức Toán Gửi bởi Nesbit |
Hiển thị:Chủ đề: Tất cả
Chủ đề: Mở
Chủ đề: Nóng
Chủ đề: Bình chọn
Chủ đề: Khóa
Chủ đề: Di chuyểnSắp xếp:Bài viết cuối
Người viết cuối
Tên chủ đề
Người viết chủ đề
Chủ đề bắt đầu
Tập tin gửi kèm
Bài trả lời
Lượt xemPhân loại:Z-AA-ZThời gian:Từ: Hôm nay
Từ: 5 ngày
Từ: 7 ngày
Từ: 10 ngày
Từ: 15 ngày
Từ: 20 ngày
Từ: 25 ngày
Từ: 30 ngày
Từ: 60 ngày
Từ: 90 ngày
Hiển thị tất cả
Hiển thị: từ lần truy cập cuối Nhớ
Chú ýTổng hợp các phương pháp chứng minh bất đẳng thức Bắt đầu bởi Whjte toanhoc2017 | |
Chú ýInequalities From 2016 Mathematical Olympiads | |
Chú ýPhương pháp EMV - The Last Method | |
Chú ýChứng minh Các BĐT đa thức bậc 4 ba biến thực trên máy tính | |
Chú ýMột lời giải bằng Cauchy-Schwarz | |
Chú ýBạn đã tìm lời giải như thế nào ? User Photo ips User Photo_mini" /> | |
Chú ýMột chút về hàm lồi và bất đẳng thức Jensen User Photo ips Xem thêm: Mặt nạ trà xanh có tác dụng mặt nạ trà xanh, 5 cách đắp mặt nạ bột trà xanh cho mọi loại da UserPhoto_mini" /> | |
đa thức bất khả quy | |
phương pháp, bài tập sắp xếp các biến trong cm bđt | |
Tổng hợp tài liệu BĐT dày hơn 2000 trang đầy đủ nhất trên k2pi.net toanhoc2017 | |
S.O.C - Kĩ thuật phân tích bình phương cho bdt hoán vị |
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề: Bất đẳng thức lớp 9", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chuyên đề: Bất đẳng thức
Tác giả : Nguyễn –Văn –Thủy sưu tập và biên soạn năm 2000chỉnh sửa năm :2007Bác tặng cháu - chúc cháu thành công
A- Mở đầu: Bất đẳng thức là một trong những mảng kiến thức khó nhất của toán học phổ thông .Nhưng thông qua các bài tập về chứng minh bất đẳng thức học sinh hiểu kỹ và sâu sắc hơn về giải và biện luận phương trình , bất phương trình ,về mối liên hệ giữa các yếu tố của tam giác về tìm giá trị lớn nhất và nhỏ nhất của một biểu thức. Trong quá trình giải bài tập , năng lực suy nghĩ , sáng tạo của học sinh được phat triển đa dang và phong phúvì các bài tập về bất đẳng thức có cách giải không theo quy tắc hoặc khuôn mẫu nào cả.Nó đòi hỏi người đọc phải có cách suy nghĩ lôgic sáng tạo biết kết hợp kiến thức cũ với kiến thức mới một cách lôgíc có hệ thống. Cũng vì toán về bất đẳng thức không có cách giải mẫu , không theo một phương pháp nhất định nên học sinh rât lúng túng khi giải toán về bất đẳng thức vì vậy học sinh sẽ không biết bắt đầu từ đâu và đi theo hương nào .Do đó hầu hết học sinh không biết làm toán về bất đẳng thứcvà không biết vận dụng bất đẳng thức để giải quyết các loại bài tập khác. Trong thực tế giảng dạy toán ở trường THCS việc làm cho học sinh biết chứng minh bất đẳng thức và vận dụng các bất đẳng thức vào giải các bài tập có liên quan là công việc rất quan trọngvà không thể thiếu được của người dạy toán ,thông qua đó rèn luyện
Tư duy lôgic và khả năng sáng tạo cho học sinh .Để làm được điều đó người thầy giáo phải cung cấp cho học sinh một số kiến thức cơ bản và một số phương pháp suy nghĩ ban đầu về bất đẳng thức . Chính vì lí do trên nên tôi tự tham khảo biên soạn chuyên đề bất đẳng thức nhằm mục đích giúp học sinh học tốt hơn. Danh mục của chuyên đề
S.t.t
Nội dungtrang
Phần mở đầu 1Nội dung chuyên đề2Các kiến thức cần lưu ý3Các phương pháp chứng minh bát đẳng thức4Phương pháp 1:dùng định nghiã4Phương pháp 2:dùng biến đổi tương đương6Phương pháp 3:dùng bất đẳng thức quen thuộc8Phương pháp 4:dùng tính chất bắc cầu 10Phương pháp 5: dùng tính chấtbủa tỷ số 12Phương pháp 6: dùng phương pháp làm trội14Phương pháp 7: dùmg bát đẳng thức tam giác 16Phương pháp 8: dùng đổi biến 17Phương pháp 9: Dùng tam thức bậc hai 18Phương pháp 10: Dùng quy nạp toán học 19Phương pháp 11: Dùng chứng minh phản chứng 21Các bài tập nâng cao23ứng dụng của bất dẳng thức 28Dùng bất đẳng thức để tìm cực trị29Dùng bất đẳng thức để: giải phương trình hệ phương trình 31Dùng bất đẳng thức để : giải phương trình nghiệm nguyên33Tài liệu tham khảo
B- nội dung Phần 1 : các kiến thức cần lưu ý 1- Định nghĩa 2- Tính chất 3-Một số hằng bất đẳng thức hay dùng Phần 2:một số phương pháp chứng minh bất đẳng thức 1-Phương pháp dùng định nghĩa 2- Phương pháp dùng biến đổi tương đương 3- Phương pháp dùng bất đẳng thức quen thuộc 4- Phương pháp sử dụng tính chất bắc cầu 5- Phương pháp dùng tính chất tỉ số 6- Phương pháp làm trội 7- Phương pháp dùng bất đẳng thức trong tam giác 8- Phương pháp đổi biến số 9- Phương pháp dùng tam thức bậc hai 10- Phương pháp quy nạp 11- Phương pháp phản chứng Phần 3 :các bài tập nâng cao PHầ
N 4 : ứng dụng của bất đẳng thức 1- Dùng bất đẳng thức để tìm cực trị 2-Dùng bất đẳng thức để giải phương trình và bất phương trình 3-Dùng bất đẳng thức giải phương trình nghiệm nguyên
Phần I : các kiến thức cần lưu ý1-Đinhnghĩa2-tính chất + A>B + A>B và B >C + A>B A+C >B + C + A>B và C > D A+C > B + D + A>B và C > 0 A.C > B.C + A>B và C B > 0 A > B + A > B A > B với n lẻ + > A > B với n chẵn + m > n > 0 và A > 1 A >A + m > n > 0 và 0 0) + ( dấu = xảy ra khi A.B B Ta chứng minh A –B > 0 Lưu ý dùng hằng bất đẳng thức M 0 với" M Ví dụ 1 " x, y, z chứng minh rằng : a) x + y + z xy+ yz + zx b) x + y + z 2xy – 2xz + 2yz c) x + y + z+3 2 (x + y + z) Giải: a) Ta xét hiệu x + y + z- xy – yz - zx =.2 .( x + y + z- xy – yz – zx) =đúng với mọi x;y;z Vì (x-y)2 0 với"x ; y Dấu bằng xảy ra khi x=y (x-z)2 0 với"x ; z Dấu bằng xảy ra khi x=z (y-z)2 0 với" z; y Dấu bằng xảy ra khi z=y Vậy x + y + z xy+ yz + zx Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu x + y + z- ( 2xy – 2xz +2yz ) = x + y + z- 2xy +2xz –2yz =( x – y + z) đúng với mọi x;y;z Vậy x + y + z 2xy – 2xz + 2yz đúng với mọi x;y;z Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu x + y + z+3 – 2( x+ y +z ) = x- 2x + 1 + y -2y +1 + z-2z +1 = (x-1)+ (y-1) +(z-1) 0 Dấu(=)xảy ra khi x=y=z=1Ví dụ 2: chứng minh rằng :a) ;b) c) Hãy tổng quát bài toángiảia) Ta xét hiệu = = = Vậy Dấu bằng xảy ra khi a=bb)Ta xét hiệu = Vậy
Dấu bằng xảy ra khi a = b =cc)Tổng quát
Tóm lại các bước để chứng minh AB tho định nghĩa Bước 1: Ta xét hiệu H = A - B Bước 2:Biến đổi H=(C+D)hoặc H=(C+D)+.+(E+F) Bước 3:Kết luận A ³ BVí dụ:(chuyên Nga- Pháp 98-99) Chứng minh "m,n,p,q ta đều có m+ n+ p+ q+1³ m(n+p+q+1) Giải: (luôn đúng)Dấu bằng xảy ra khi Bài tập bổ xung phương pháp 2 : Dùng phép biến đổi tương đương
Lưu ý: Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúng hoặc bất đẳng thức đã được chứng minh là đúng. Chú ý các hằng đẳng thức sau: Ví dụ 1: Cho a, b, c, d,e là các số thực chứng minh rằng a) b) c) Giải: a) (bất đẳng thức này luôn đúng) Vậy (dấu bằng xảy ra khi 2a=b) b) Bất đẳng thức cuối đúng. Vậy Dấu bằng xảy ra khi a=b=1 c) Bất đẳng thức đúng vậy ta có điều phải chứng minh
Ví dụ 2: Chứng minh rằng: Giải: a2b2(a2-b2)(a6-b6) 0 a2b2(a2-b2)2(a4+ a2b2+b4) 0Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh Ví dụ 3: cho x.y =1 và x.y Chứng minh Giải: vì :xy nên x- y 0 x2+y2 ( x-y) x2+y2- x+y 0 x2+y2+2- x+y -2 0 x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh
Ví dụ 4: 1)CM: P(x,y)= 2)CM: (gợi ý :bình phương 2 vế) 3)choba số thực khác không x, y, z thỏa mãn: Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1 (đề thi Lam Sơn 96-97) Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1 =(xyz-1)+(x+y+z)-xyz()=x+y+z - ( (vì1 x.y.z>1 Mâu thuẫn gt x.y.z=1 bắt buộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1Phương pháp 3: dùng bất đẳng thức quen thuộc
A/ một số bất đẳng thức hay dùng 1) Các bất đẳng thức phụ: a) b) dấu( = ) khi x = y = 0 c) d) 2)Bất đẳng thức Cô sy: Với 3)Bất đẳng thức Bunhiacopski 4) Bất đẳng thức Trê- bư-sép: Nếu Nếu Dấu bằng xảy ra khib/ các ví dụ ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng (a+b)(b+c)(c+a)8abc
Giải: Cách 1:Dùng bất đẳng thức phụ: Tacó ; ; (a+b)(b+c)(c+a)8abc Dấu “=” xảy ra khi a = b = cví dụ 2(tự giải): 1)Cho a,b,c>0 và a+b+c=1 CMR: (403-1001) 2)Cho x,y,z>0 và x+y+z=1 CMR:x+2y+z 3)Cho a>0 , b>0, c>0 CMR: 4)Cho x,y thỏa mãn ;CMR: x+y ví dụ 3: Cho a>b>c>0 và chứng minh rằng Giải: Do a,b,c đối xứng ,giả sử abc áp dụng BĐT Trê- bư-sép ta có == Vậy Dấu bằng xảy ra khi a=b=c= ví dụ 4: Cho a,b,c,d>0 và abcd =1 .Chứng minh rằng :Giải:Ta có Do abcd =1 nên cd = (dùng ) Ta có (1) Mặt khác: =(ab+cd)+(ac+bd)+(bc+ad) = Vậy ví dụ 5: Cho 4 số a,b,c,d bất kỳ chứng minh rằng: Giải: Dùng bất đẳng thức Bunhiacopski tacó ac+bd mà ví dụ 6: Chứng minh rằng Giải: Dùng bất đẳng thức Bunhiacopski Cách 1: Xét cặp số (1,1,1) và (a,b,c) ta có 3 Điều phải chứng minh Dấu bằng xảy ra khi a=b=c
Ph ương pháp 4: Sử dụng tính chất bắc cầu
Lưu ý: A>B và b>c thì A>c 00 thỏa mãn a> c+d , b>c+d Chứng minh rằng ab >ad+bc Giải: Tacó (a-c)(b-d) > cd ab-ad-bc+cd >cd ab> ad+bc (điều phải chứng minh)ví dụ 2: Cho a,b,c>0 thỏa mãn Chứng minh Giải: Ta có :( a+b- c)2= a2+b2+c2+2( ab –ac – bc) 0 ac+bc-ab ( a2+b2+c2) ac+bc-ab 1 Chia hai vế cho abc > 0 ta có ví dụ 3 Cho 0 1-a-b-c-d Giải: Ta có (1-a).(1-b) = 1-a-b+ab Do a>0 , b>0 nên ab>0 (1-a).(1-b) > 1-a-b (1) Do c 0 ta có (1-a).(1-b) ( 1-c) > 1-a-b-c (1-a).(1-b) ( 1-c).(1-d) > (1-a-b-c) (1-d)=1-a-b-c-d+ad+bd+cd (1-a).(1-b) ( 1-c).(1-d) > 1-a-b-c-d(Điều phải chứng minh)ví dụ 41- Cho 0 0 1+ > + b mà 0 , > Từ (1) và (2) 1+> + Vậy + 0 thì từ ` ví dụ 1 : Cho a,b,c,d > 0 .Chứng minh rằng Giải : Theo tính chất của tỉ lệ thức ta có (1) Mặt khác : (2) Từ (1) và (2) ta có 1 chứng minh rằng Giải: Ta có với k = 1,2,3,,n-1 Do đó: Ví dụ 2 : Chứng minh rằng: Với n là số nguyên Giải :Ta có Khi cho k chạy từ 1 đến n ta có 1 > 2 Cộng từng vế các bất đẳng thức trên ta có Ví dụ 3 : Chứng minh rằng Giải: Ta có Cho k chạy từ 2 đến n ta có Vậy Ph ương pháp 7: Dùng bất đẳng thức trong tam giác
Lưu ý: Nếu a;b;clà số đo ba cạnh của tam giác thì : a;b;c> 0 Và |b-c| (a+b-c).(b+c-a).(c+a-b) Giảia)Vì a,b,c là số đo 3 cạnh của một tam giác nên ta có ị Cộng từng vế các bất đẳng thức trên ta có a2+b2+c2 ờb-c ù ị > 0 b > ờa-c ùị > 0 c > ờa-b ùị Nhân vế các bất đẳng thức ta được
Ví dụ2: (404 – 1001) 1) Cho a,b,c là chiều dài ba cạnh của tam giác Chứng minh rằng 2) Cho a,b,c là chiều dài ba cạnh của tam giác có chu vi bằng 2 Chứng minh rằng Ph ương pháp 8: đổi biến số
Ví dụ1: Cho a,b,c > 0 Chứng minh rằng (1)Giải :Đặt x=b+c ; y=c+a ;z= a+b ta có a= ; b = ; c =ta có (1) ( Bất đẳng thức cuối cùng đúng vì ( ; nên ta có điều phải chứng minh Ví dụ2: Cho a,b,c > 0 và a+b+c 0 , b > 0 , c > 0 CMR: 2)Tổng quát m, n, p, q, a, b >0 CMR Ph ương pháp 9: dùng tam thức bậc hai
Lưu ý : Cho tam thức bậc hai Nếu thì Nếu thì Nếu thì với hoặc () với Ví dụ1: Chứng minh rằng (1) Giải: Ta có (1) Vậy với mọi x, y
Ví dụ2: Chứng minh rằng
Giải: Bất đẳng thức cần chứng minh tương đương với Ta có Vì a = vậy (đpcm) Ph ương pháp 10: dùng quy nạp toán học
Kiến thức: Để chứng minh bất đẳng thức đúng với ta thực hiện các bước sau : 1 – Kiểm tra bất đẳng thức đúng với 2 - Giả sử BĐT đúng với n =k (thay n =k vào BĐT cần chứng minh được gọi là giả thiết quy nạp ) 3- Ta chứng minh bất đẳng thức đúng với n = k +1 (thay n = k+1vào BĐT cần chứng minh rồi biến đổi để dùng giả thiết quy nạp) 4 – kết luận BĐT đúng với mọi Ví dụ1: Chứng minh rằng (1) Giải : Với n =2 ta có (đúng) Vậy BĐT (1) đúng với n =2 Giả sử BĐT (1) đúng với n =k ta phải chứng minh BĐT (1) đúng với n = k+1 Thật vậy khi n =k+1 thì (1) Theo giả thiết quy nạp k2+2k 0 Chứng minh rằng (1)Giải
Ta thấy BĐT (1) đúng với n=1Giả sử BĐT (1) đúng với n=k ta phải chứng minh BĐT đúng với n=k+1Thật vậy với n = k+1 ta có (1) (2) Vế trái (2) (3) Ta chứng minh (3) (+) Giả sử a b và giả thiết cho a -b a (+) Giả sử a 0 , ab+bc+ac > 0 , abc > 0 Chứng minh rằng a > 0 , b > 0 , c > 0 Giải : Giả sử a 0 thì từ abc > 0 a 0 do đó a 0 và a 0 a(b+c) > -bc > 0 Vì a 0 b + c 0 tương tự ta có b > 0 , c > 0 Ví dụ 2: Cho 4 số a , b , c ,d thỏa mãn điều kiện ac 2.(b+d) .Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: , Giải : Giả sử 2 bất đẳng thức : , đều đúng khi đó cộng các vế ta được (1) Theo giả thiết ta có 4(b+d) 2ac (2) Từ (1) và (2) hay (vô lý) Vậy trong 2 bất đẳng thức và có ít nhất một các bất đẳng thức sai
Ví dụ 3: Cho x,y,z > 0 và xyz = 1. Chứng minh rằng Nếu x+y+z > thì có một trong ba số này lớn hơn 1 Giải : Ta có (x-1).(y-1).(z-1) =xyz – xy- yz + x + y+ z –1 =x + y + z – () vì xyz = 1 theo giả thiết x+y +z > nên (x-1).(y-1).(z-1) > 0 Trong ba số x-1 , y-1 , z-1 chỉ có một số dương Thật vậy nếu cả ba số dương thì x,y,z > 1 xyz > 1 (trái giả thiết) Còn nếu 2 trong 3 số đó dương thì (x-1).(y-1).(z-1) ab+bc+ac
Giải
Ta có hiệu: b2+c2- ab- bc – ac = b2+c2- ab- bc – ac = ( b2+c2- ab– ac+ 2bc) +3bc =(-b- c)2 + =(-b- c)2 +>0 (vì abc=1 và a3 > 36 nên a >0 )Vậy : b2+c2> ab+bc+ac Điều phải chứng minh2) Chứng minh rằng a) b) với mọi số thực a , b, c ta có c) Giải : a) Xét hiệu H = = H0 ta có điều phải chứng minh b) Vế trái có thể viết H = H > 0 ta có điều phải chứng minh c) vế trái có thể viết H = H 0 ta có điều phải chứng minh
Ii / Dùng biến đổi tương đương 1) Cho x > y và xy =1 .Chứng minh rằng Giải : Ta có (vì xy = 1) Do đó BĐT cần chứng minh tương đương với BĐT cuối đúng nên ta có điều phải chứng minh2) Cho xy 1 .Chứng minh rằng Giải : Ta có BĐT cuối này đúng do xy > 1 .Vậy ta có điều phải chứng minh
Iii / dùng bất đẳng thức phụ 1) Cho a , b, c là các số thực và a + b +c =1 Chứng minh rằng Giải : áp dụng BĐT Bunhia
Côpski cho 3 số (1,1,1) và (a,b,c) Ta có (vì a+b+c =1 ) (đpcm) 2) Cho a,b,c là các số dương Chứng minh rằng (1) Giải : (1) áp dụng BĐT phụ Với x,y > 0 Ta có BĐT cuối cùng luôn đúng Vậy (đpcm)Iv / dùng phương pháp bắc cầu 1) Cho 0 0 .Chứng minh rằng : Giải : Vì a ,b ,c ,d > 0 nên ta có (1) (2) (3) Cộng các vế của 4 bất đẳng thức trên ta có : (đpcm) 2) Cho a ,b,c là số đo ba cạnh tam giác Chứng minh rằng Giải : Vì a ,b ,c là số đo ba cạnh của tam giác nên ta có a,b,c > 0 Và a 0 và x+y+z =1 Giải : Vì x,y,z > 0 ,áp dụng BĐT Côsi ta có x+ y + z áp dụng bất đẳng thức Côsi cho x+y ; y+z ; x+z ta có Dấu bằng xảy ra khi x=y=z= Vậy S Vậy S có giá trị lớn nhất là khi x=y=z= Ví dụ 3 : Cho xy+yz+zx = 1 Tìm giá trị nhỏ nhất của Giải : áp dụng BĐT Bunhiacốpski cho 6 số (x,y,z) ;(x,y,z) Ta có (1) Ap dụng BĐT Bunhiacốpski cho () và (1,1,1) Ta có Từ (1) và (2) Vậy có giá trị nhỏ nhất là khi x=y=z= Ví dụ 4 : Trong tam giác vuông có cùng cạnh huyền , tam giác vuông nào có diện tích lớn nhất Giải : Gọi cạnh huyền của tam giác là 2a Đường cao thuộc cạnh huyền là h Hình chiếu các cạnh góc vuông lên cạnh huyền là x,y Ta có S = Vì a không đổi mà x+y = 2a Vậy S lớn nhất khi x.y lớn nhất Vậy trong các tam giác có cùng cạnh huyền thì tam giác vuông cân có diện tích lớn nhất Ii/ dùng b.đ.t để giải phương trình và hệ phương trình Ví dụ 1 : Giải phương trình sau Giải : Ta có Vậy Dấu ( = ) xảy ra khi x+1 = 0 x = -1 Vậy khi x = -1 Vậy phương trình có nghiệm duy nhất x = -1 Ví dụ 2 : Giải phương trình Giải : áp dụng BĐT Bunhia
Cốpski ta có : Dấu (=) xảy ra khi x = 1 Mặt khác Dấu (=) xảy ra khi y = - Vậy khi x =1 và y =